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Abstract 
This paper uses the kinematic mapping into the im- 
age space of spherical displacements to design a co- 
operating spherical robot system for workpiece orien- 
tating. The kinematic chain formed b y  the cooperat- 
ing robots grasping the workpiece forms a multi de- 
gree of freedom closed chain which is also known as 
a robotic mechanism. The spherical robots considered 
are spherical RPR open chains and they rigidly grasp 
the workpiece to form a 3 degree of freedom closed 
chain. The design problem considered is to determine 
the base locations and grasp points that enable the co- 
operating robots to guide a workpiece through an ar- 
bitrary number of desired orientations. A n  example 
of the design of a cooperating spherical RPR robot 
system for six(6) desired orientations is presented. 

Keywords cooperating spherical robots, spherical 
mechanisms, robotic mechanisms, rigid body guid- 
ance, approximate motion synthesis. 

1 Introduction 
This paper presents the design of cooperating spher- 
ical RPR robots for approximate rigid body motion. 
The cooperating robots may also be viewed as a 
three(3) degree of freedom spherical robotic mech- 
anism. A spherical robotic mechanism is a multi 
degree of freedom simple spherical closed kinematic 
chain. In the case of 3-dof spherical robotic mecha- 
nisms the closed chain consists of two RPR spherical 
open chains, or triads, which connect the workpiece, 
or floating link, to the ground. 

For facilitating the kinematic synthesis of the 3-dof 
spherical robotic mechanism we view its RPR spheri- 
cal open chains a$ variable crank length spherical RR 
dyads and employ well known dyadic synthesis tech- 

niques for rigid body guidance, see Suh and Radcliffe 
1978. The variable link length spherical RR dyad 
can be realized, and manufactured, by using it RRR 
open chain, see Fig. 1 and Larochelle 1994. To maxi- 
mize the workspace of thle mechanism the two links in 
each of the 3R open chains are chosen to be 9O(deg) 
in length, see Ouerfelli and Kumar 1991. 

In Bodduluri 1991 the solution to four position 
rigid body guidance for the spatial 4 C  robotic mecha- 
nism was presented and in Larochelle and McCarthy 
1994 a design procedure for an arbitrary number of 
prescribed positions was demonstrated. Here we ex- 
tend the works of Ravani and Roth 1983, Bodduluri 
1990, and Larochelle 1994, and Larochelle and Mc- 
Carthy 1994 to the dimensional synthesis of cooper- 
ating spherical robots for n position rigid body guid- 
ance, see Fig. 1. The first step of the design process 
is to define the design goal of the robotic system in 
terms of the desired posilions of the workpiece and to 
specify the bounds on the crank lengths of the robotic 
mechanism, i.e. limits for minimum and maximum 
spherical translation of the P joint of each robot. 
Note that if in0 bounds are placed upon the motion 
at  the P joints that the system can reach any de- 
sired orientation l .  However, manufacture of such a 
spherical robot is not passible. Moreover, in the ex- 
treme case that the two crank lengths are held fixed 
we have a spherical 4R mechanism which in general 
can guide a body exactly through only five positions, 
see Suh and Radcliffe 1978. Therefore, for an arbi- 
trary finite number of desired workpiece orientations 
we utilize an optimization procedure first derived by 
Ravani and Roth 1983 by which we vary the synthesis 
variables so as to minimize the position error of the 
system through an arbitrary number of orientations 
for specified bounds on the motion of the P joints. 

The optimization algorithm employed involves 

'This can be seen by viewing each RPR robot as an ideal 
3R robot wrist. 
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Figure 1: Cooperating Spherical RPR Robots Illustrated as Cooperating 3R Robots 
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writing the kinematic constraint equation of the vari- 
able crank length spherical RR dyad using the com- 
ponents of a quaternion. We view these equations 
as constraint manifolds in the image space of spher- 
ical displacements, see Bottema and Roth 1979 and 
McCarthy 1990. The result is an analytical represen- 
tation of the workspace of the dyad which is param- 
eterized by its dimensional synthesis variables. We 
then combine two variable crank length spherical RR 
dyads to form a 4R closed chain. The constraint man- 
ifold of the variable crank length 4R mechanism is 
simply the intersection of the constraint manifolds of 
its two RR subchains. This intersection provides an 
analytical representation of the workspace of the co- 
operating robot system in the image space of spherical 
displacements. The optimization goal is to determine 
the design variables such that all of the prescribed 
positions are either: (1) in the workspace, or, (2) the 
workspace comes as close as possible to all of the de- 
sired positions subject to the constraints on the vari- 
able crank length. The result of the design process 
is a cooperating spherical robot system that guides 
the workpiece as close as possible to the desired ori- 
entations subject to the imposed P joint translation 
limits. A design case study for 6 desired orientations 
is presented. 

2 Spherical Displacements 
A general spherical displacement may be described by 
a 3 x 3 orthonormal rotation matrix [A] .  Using the 
rotation axis s and the rotation angle 4 associated 
with [A] we can represent the spherical displacement 
by the four dimensional vector, q, which is written 
as, see McCarthy 1990, 

(1) 
e 

e 
41 = s,sin- 2 

42 = s,sin - 
2 
e 

43 = s, sin - 
2 

e 
44 = cos- 

2 

We refer to q as a quaternion. The components of q 
satisfy, 

and lie on a unit hypersphere which we denote as the 
image space of spherical displacements. 

The rotation matrix, [.A] can be recovered from the 
quaternion, q, as follows, 

[:AI = (3) 

3 Constraint Manifolds 
In this section we derive t8he algebraic constraint man- 
ifold of the spherical RR dyad. The constraint mani- 
fold is derived by using the geometric conditions that 
the joints of the dyad impose on the moving body. 
The vector equations for the geometric constraints 
are based upon the work of Suh and Radcliffe 1978, 
and Bodduluri 1990. 

A spherical RR dyad is shown in Fig. 2. Let the 
axis of the fixed joint, or the location of the base of the 
RPR robot, be specified by the vector U measured in 
the fixed reference frame F and let the moving axis, 
or the location of the grasp point of the RPR robot, 
be specified by X measured in the moving frame M .  
Because the two axes are connected by a rigid link 
the angle between the two axes of the dyad remains 
constant and we have, 

U * [AIX = COS& (4) 

To obtain an algebraic expression for the constraint 
manifold in the image space of spherical displace- 
ments we substitute Eq. 3 into Eq. 4, 

RRsph(q,r) : 1u. [A(q)]X - cos CY = 0 (5) 

Given U, A, and a the constraint manifold of that 
dyad is the set of all image points, q, that are solu- 
tions to Eq. 5 and it represents all possible locations 
of M with respect to F for the dyad. 

4 Fitting Image Curves 
We now describe the method presented by Ravani 
and Roth 1983 to perform dimensional synthesis us- 
ing constraint manifolds. The first step is to formu- 
late the constraint manifold of the kinematic chain, 
CM(q, .I. 
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A in M 

uinF  

approximate the normal distance, e ( r ) ,  from q d  to 
the constraint manifold, 

(12) 
2 

e ( r )  = (q* - q d l T ( q *  - q d )  

Finally, performing n position synthesis requires 
computing e(.) for each desired position q d .  The to- 
tal error is then given by E(r) = cy=l e;(r) Thus, we 
have formulated the n position dimensional synthesis 
problem in the form of a nonlinear minimization prob- 
lem with objective function E(r). For further discus- 
sion of constraint manifold fitting see Larochelle 1994, 
Bodduluri 1990, and Ravani and Roth 1983. 

Figure 2: A Spherical RR Dyad 

where R R , , h - , ( q ,  r) and R R J p h - b ( q ,  r) are from 
Eq. 5 written for each dyad of the chain, G,(q) is 
the quaternion constraint equation, Eq. 2, and r is 
the vector of dimensional synthesis variables for both 
dyads. 

The goal is to  determine the design variables r such 
that the constraint manifold passes through, or as 
close as possible to, the n desired points in the image 
space. Let q d  represent one desired point in the image 
space. We assume that q d  does not lie on the con- 
straint manifold and write a Taylor series expansion 
of the constraint manifold about q d .  

Let us now reformulate Eq. 7 as a system of linear 
equations, 

[J]x = b (8) 

where, [ J ]  is the matrix of partial derivatives of 
C M ( q , r ) ,  b = - C M ( q d , r ) ,  and x = q - q d .  In 
general there will be infinite solutions to  Eq. 8. 

The minimum norm solution of Eq. 8 is found by 
use of the pseudo inverse of [J], 

(9) 

which yields, 

x* = [J]+b = { [J]T([J][J]T)-'} b (10) 

From the definition of x we have. 

where q* approximates the point on the constraint 
manifold closest to q d .  Moreover, we may use q* to 

5 Case Study 
We now present an example of the design of the co- 
operating spherical R P R  robot system for 6 position 
rigid body guidance. 

The 6 desired positions are listed in Tbl. 1. The 12 
element design vector r is, 

where U and X are the base location and grasp points 
of each RPR robot and the subscripts a and b denote 
which robot the quantity is associated with. Note 
that the variable crank lengths are not design vari- 
ables to  be sent to the optimization routine since we 
allow a,  and ab to vary during the motion of the 
robotic system. In this example we have constrained 
a,  and ab such that,  

75.0(deg) 5 a,  5 85(deg) 
75.0(deg) 5 ffb 5 85(deg) 

The variable crank lengths are incorporated into the 
design procedure as follows. 

1. Formulate an initial guess for the design vector 
from a spherical 4 R  mechanism which is a solu- 
tion to three of the n desired positions. 

2. Using the guess for the base locations and grasp 
points solve for the two crank lengths such that 
the mechanism passes through the first position 
using the crank constraint equation, Eq. 4. 

3. For each dyad, if the crank length is less than its 
lower bound then set it equal to  its lower bound, 
if it is greater than its upper bound then set it 
equal to its upper bound. 

4.  Evaluate the error for this design to  the first po- 
sition. 
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Long. 1 Lat. I Roll - 
Initial Guess 

0.47945 
0.49837 

- 
-0.72233 

-0.80591 
-0.16287 
-0.56919 
-0.95856 
0.19023 
0.21206 

-0.65721 
-0.43955 
-0.61227 

Table 1: 6 Desired Positions 

Final Design 

0.20586 
0.45532 

-0.86620 

-0.61026 
-0.59043 
-0.52819 
-0.90968 
0.31613 

-0.26934 
- 0.06470 
- 0.56649 
-0.82153 

I Pos. 1 DRIVING 1 DRIVEN I Error 
84.96 
85.00 
84.46 
84.90 
82.33 
85.00 

84.99 
75.02 
78.22 
84.99 
83.65 
75.00 

4.29E- 14 
6.10E-14 
2.08E- 14 
2.11E-15 
5.68E- 14 
4.97E-16 
= 1.84E-13 

I 

Table 2: Position Results 

5. Repeat steps 2 - 4 for each of the n desired po- 
sitions. 

6. Send the design vector and the n position errors 
to the optimization routine. 

7. The result of the optimization routine is a bet- 
ter guess to the design vector. With the new 
design vector repeat steps 2 - 6 until the algo- 
rithm has converged to a solution. If the total 
error is acceptable then the design is completed. 
If not, then select a new grouping of three of the 
n positions and repeat steps 1 - 7. 

The results of the optimization procedure are the base 
locations and grasp points of the robots as well as the 
required crank lengths, or P joint translations. The 
design vector provides the location(u,,ua) of the base 
of each robot and their corresponding grasp points 
on the workpiece, see Tbl. 3. In Tbl. 2 the resulting 
error at  each position and the required crank lengths 
are listed. The final cooperating spherical RPR 
robot system is shown in Fig. 3 with the workpiece 
in desired orientation #l. 

6 Conclusion 

In this paper we have presented our development of 
an algorithm, for the dimensional synthesis of two 
cooperating spherical R P R  robots for workpiece ori- 
entating. Specifically, we synthesize the robot system 

Table 3: Optimization Results 

to guide a body through itn arbitrary number of orien- 
tations subject to its P joint translation bounds. The 
synthesis procedure utilizes an algebraic formulation 
for the constraint manifold of the spherical RR dyad 
to define the workspace of the system in the image 
space of spherical displacements. The result of the 
optimization is the base location and grasp points for 
each each robot as well im the P joint translation in 
each of the desired orient#ations. Future work will ad- 
dress the stiffness and force transmission characteris- 
tics of the cooperating rlobot system presented here. 
Our hope is that such systems will prove useful when 
utilized as robot wrists by resulting in robot wrists 
which have increased pa!yload capacity and stiffness. 
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Figure 3: Two Cooperating Spherical RPR Robots 
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